
Chapter two 

Elementary properties of quantum mechanics 

3.1 Introduction 

In chapter one and two we introduced: 

• the concept of the wave function Ψ(𝒓, 𝑡), which is assumed to describe the 

dynamical state of a particle (or a physical system).  

• Then we saw that a particle can be represented by a wave packet which is 

formed by superposing plane waves of different wave numbers.  

Now, we need a wave equation, by solving it we obtain the wave function at any 

point (r, t) in space and time, given suitable initial and boundary conditions. 

 

Correspondence principle: The quantum theory must approach classical theory in 

the limit 𝑛 → ∞, where n is a quantum number. 

The equation was discovered by Erwin Schrodinger in 1926 and is called the 

Schrodinger equation.  

To apply Schrodinger equation, we must understand some of the task properties of 

wave functions and the Operators. 

 

3.2 Interpretation, Normalization and Quantization of the 

Wavefunction 
 



In Quantum Mechanics, a “particle” (e.g. an electron) does not follow a 

definite trajectory 𝒓(𝑡), 𝒑(𝑡) but rather it is best described as being distributed 

through space like a wave. 

Wavefunction Ψ(𝑥): is a wave representing the spatial distribution of a “particle”. 

e.g. electrons in an atom are described by a wavefunction centred on the nucleus. 

Ψ(𝑥): is a function of the coordinates defining the position of the classical particle 

One-dimension (1D) time independent Ψ(𝑥) 

Three-dimension (3D) time independent Ψ(𝒓) = Ψ(𝑥, 𝑦, 𝑧) = Ψ(𝑟, 𝜃, 𝜙) (e.g. 

atoms)  

Ψ may be time dependent   e.g. Ψ(𝑥, 𝑡) 𝑎𝑛𝑑 Ψ(𝒓, 𝑡) = Ψ(𝑥, 𝑦, 𝑧, 𝑡) = Ψ(𝑟, 𝜃, 𝜙, 𝑡)  

 

Interpretation of the Wavefunction 

• In QM, a “particle” is distributed in space like a wave.   

• We cannot define a position for the particle. 

• Instead, we define a probability of finding the particle at any point in space. 

The Born Interpretation (1926): “The square of the wavefunction at any point in 

space is proportional to the probability of finding the particle at that point.” 

Note: the wavefunction (Ψ) itself has no physical meaning. 

If the wavefunction at point 𝑥 is Ψ(x), the probability of finding the particle in the 

infinitesimally small region 𝑑𝑥 between 𝑥 and 𝑥 + 𝑑𝑥 is: 

P(x) = |Ψ(x)|2 = Ψ∗Ψ 

|Ψ(x)|2  is the probability density 

|Ψ(x)| is the magnitude of Ψ at point 𝑥 

probability must be real and positive (0 ≤ 𝑃 ≤ 1) 

Normalization of the Wavefunction 

We return now to the statistical interpretation of the wave function, which says 

that  𝑝(𝑥) = |Ψ(𝑥, 𝑡)|2 is the probability density for finding the particle at point x, 



at time t. It follows that the integral of |ΨΨ∗|2 must be 1 (one) (the particle's got to 

be somewhere): 

𝑃𝑡𝑜𝑡 = ∫|Ψ(𝑥, 𝑡)|2𝑑𝑥 = 1

∞

−∞

 

Since the probability must be (one) for finding the particle somewhere, the wave 

function must be normalized. 

For three dimensions  

𝑃𝑡𝑜𝑡 = ∫|Ψ(𝑥, 𝑦, 𝑧, 𝑡)|2𝑑𝑥𝑑𝑦𝑑𝑧 = ∫ |Ψ(𝒓, 𝑡)|2𝑑𝒓 = 1

∞

−∞

∞

−∞

 

In this case, Ψ is said to be a normalized wavefunction 

How to Normalize the Wavefunction ? 

If Ψ is not normalized, then: 

∫|Ψ(𝑥, 𝑡)|2𝑑𝑥 = 𝑁                            𝑁 ≠ 1

∞

−∞

 

A corresponding normalized wavefunction (Ψ𝑛𝑜𝑟𝑚) can be defined: 

Ψ𝑛𝑜𝑟𝑚 =
1

√𝑁
 Ψ 

such that                          ∫ |Ψ𝑛𝑜𝑟𝑚(𝑥, 𝑡)|2𝑑𝑥 = 1
∞

−∞
 

The factor (
𝟏

√𝑵
) is known as the normalization constant. 

Quantization of the Wavefunction 



The Born interpretation of Ψ places restrictions on the form of the wavefunction: 

(a) Ψ must be continuous (no breaks).  

 

 

(b) The gradient of Ψ is (
𝑑Ψ

𝑑𝑥
)  must be continuous. 

 

(c) Ψ must have a single value at any point in space. 

 

 

(d) Ψ must be finite everywhere. 

 

(e)  Ψ cannot be zero everywhere. 

3.3 Operators and Observables 

If Ψ is the wavefunction representing a system, we can write: 

𝑨̂Ψ = 𝑎Ψ 

Where a: Observable property of system (e.g. energy, momentum, dipole moment 

…) 

 𝑨̂ ∶  Operator corresponding to observable a. 

This is an eigenvalue equation and can be rewritten as: 

𝑨̂Ψ: Operator 𝑨̂ acting on function Ψ (eigenfunction) 

𝑎Ψ: function Ψ multiplied by a number a (eigenvalue) 

(Note: Ψ can’t be cancelled). 

Examples:  

1- If 𝐴̂ =
𝑑

𝑑𝑥
 𝑎𝑛𝑑 Ψ = 𝑒𝑚𝑥 . Is the function Ψ an eigenfunction for the 

Operator 𝐴̂. Show that. 



𝐴̂Ψ = aΨ 

𝑑

𝑑𝑥
(𝑒𝑚𝑥) = 𝑚𝑒𝑚𝑥 = 𝑚Ψ 

• The function 𝑒𝑚𝑥 is an eigenfunction for the Operator 
𝑑

𝑑𝑥
 

• The magnitude m is the eigenvalue for the Operator 
𝑑

𝑑𝑥
 

 

2- If 𝐴̂ =
𝑑

𝑑𝑥
 𝑎𝑛𝑑 Ψ = 𝑥3 . Is the function Ψ an eigenfunction for the Operator 𝐴̂. 

Show that. 

𝐴̂Ψ = aΨ 

𝑑

𝑑𝑥
(𝑥3) = 3𝑥 

So  

𝐴̂Ψ ≠ aΨ 

• The function 𝑥3 is not an eigenfunction for the Operator 
𝑑

𝑑𝑥
 

3- If 𝐴̂ =
𝑑2

𝑑𝑥2
 𝑎𝑛𝑑 Ψ = sin 𝑎𝑥 . Is the function Ψ an eigenfunction for the 

Operator 𝐴̂. Show that. 

𝑑2

𝑑𝑥2
 (sin 𝑎𝑥) =

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
(sin 𝑎𝑥)) =

𝑑

𝑑𝑥
(𝑎 cos 𝑎𝑥) = −𝑎2  sin 𝑎𝑥 

𝑑2

𝑑𝑥2
 (sin 𝑎𝑥) = −𝑎2  sin 𝑎𝑥 

• The function (sin 𝑎𝑥) is an eigenfunction for the Operator 
𝑑2

𝑑𝑥2 

• The magnitude (−𝑎2) is the eigenvalue for the Operator 
𝑑2

𝑑𝑥2 

 


